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RealtimeOptimal Adaptationfor Planetary
GeometryandTexture: 4-8 Tile Hierarchies
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Abstract— The realtime display of huge geometry and
imagery databases involves view-dependent approxima-
tions, typically thr ough the useof precomputedhierarchies
that are selectively re�ned at runtime. A classicmotivat-
ing problem is terrain visualization, in which planetary
databasesinvolving billions of elevation and color values
are displayed on PC graphics hardware at high frame
rates. This paper intr oducesa new diamonddata structur e
for the basic selective-re�nement processing,which is a
streamlined method of representing the well-known hier-
archies of right triangles that have enjoyed much success
in realtime, view-dependentterrain display. Regular-grid
tiles are proposedas the payload data per diamond for
both geometryand texture. The useof 4-8 grid re�nement
and coarsening schemesallows level-of-detail transitions
that are twice as gradual as traditional quadtree-based
hierarchies,as well as very high-quality low-pass�ltering
compared to subsampling-basedhierarchies. An out-of-
core storageorganization is intr oducedbasedon Sierpinski
indices per diamond, along with a tile preprocessing
framework basedon �ne-to-coarse, same-level, and coarse-
to-�ne gathering operations. To attain optimal frame-to-
frame coherenceand processing-orderpriorities, dual split
and merge queuesare developed similar to the Realtime
Optimally Adapting Meshes(ROAM) Algorithm, as well
as an adaptation of the ROAM frustum culling technique.
Example applications of lake-detection and procedural
terrain generation demonstrate the �exibility of the tile
processingframework.

Index Terms— Lar ge Data Set Visualization, Level-of-
Detail Techniques, View-Dependent Visualization, Adap-
tive Textures,Out-of-Core Algorithms, Procedural Terrain
Generation

I . INTRODUCTION

PLANETARY datasetsarereadilyavailablewith over
a billion elevation and color values[1], [26]. Dis-

playing good approximationsof thesedatabaseson PC
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hardwareat high frameratesis an ongoingchallengeas
the sizesof the databasesandthe opportunitiesafforded
by new graphicshardware both grow. We considerthe
casewhen geometryand color data is too extensive to
�t in core, but must be pagedfrom disk both during
pre-interactionprocessing(hierarchy building and the
like), as well as during interactive display. Given that
the databasesare hundredsto thousandsof times as
large as can be displayedat high frame rates, reduc-
tions in complexity are needed.Ideally, geometryand
textureapproximationsshouldbeoptimizeddynamically
basedon the viewpoint. Historically, view-dependent
optimizers worked at a �ne–grained level, adding or
subtractingonly two trianglesat a time. This makes it
hardto exploit newer graphicshardwarethat works best
with renderingunits that consistof larger collectionsof
triangles.The ROAM Algorithm [8], which makesideal
use of frame-to-framecoherenceto prioritize coarsen-
ing and re�nement work, is used as the basis in this
paper for ordering selective-re�nement operationsand
frustum culling. This basic schemeis enhancedwith
a streamlineddata structure,out-of-core indexing, and
a tile-processingsystem.This coarse-grainedselective
re�nementof geometryandimagesis mademoreseam-
less at level-to-level transitionsthrough the use of 4-
8 tile hierarchiesthat have very gradual level-of-detail
changes,and through the use of high-quality low-pass
�ltering. An example of a one-meterdatabaseof Fort
Hunter Liggett, CA, shown in Figure 1, demonstrates
how seamlessthesetransitionscanbe, even without the
useof per-pixel blending(mipmaps)to hide the seams.

Hardware renderingrateshave grown to exceed200
million trianglesper second.This meansthat choosing
triangleadaptationsfor uniform screensizewill resultin
roughlyone-pixel trianglesfor full-screendisplayat 100
frames-per-secondrenderingrates.At this point it is no
longerdesirableto make trianglesnon-uniformin screen
spacedue to variationsin surfaceroughness,sincethis
will only lead to sub-pixel trianglesand artifacts.This
situationfor geometryis now in a similar regime to that
of texturelevel-of-detailadaptation,whichseeksto make
eachtexel project to roughly onepixel in screenspace.
Overall then our goal is to low-pass�lter the geometry
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Fig. 1. Two screenshotsof an over�ight of Fort Hunter Liggett, CA that illustrate the useof 4-8 texture hierarchies.On the left is the
seamlesstextured imageproducedby the system,while the right shows the outline of the texture tiles usedin producingthe image.

andtexturesso that trianglesandtexels project to about
a pixel.

While many geometrichierarchieshave beendevised
for large-data view-dependentadaptation, the above
analysissuggeststhat uniform aspect-ratiotrianglesare
more desirablefor attaining better control of geomet-
ric antialiasing.Also, better low-pass�ltering methods
are known for regular grids. Texture hierarchiesare
more constrainedthan geometry, since graphicshard-
wareworks mosteffectively with rastertiles of modest,
power-of-two sizes.For ef�ciency of texture loadingand
packing,we avoid considerationof textureatlasschemes
in which a power-of-two tile is �lled with irregular sub-
regionsthatareusedindependently. This leadsus to use
regular grids for ef�ciency anduniformity of treatment.
In theory, thereareonly two regular tilings of the plane
that allow conformantadaptive meshesto be formed
without special�x-ups at level of detail transitions:the
4-8 meshesandthe 4-6-12meshes[10], [11]. We chose
the 4-8 meshesand their diamondelements,shown in
Figure 2, since thesematch the constraintsof texture
hardware and have many known desirableproperties
[18], [8], [19]. At display time, trianglepatchesassoci-
atedwith theleaf diamondsaredrawn, whereeachpatch
associateswith the most appropriateavailable texture
diamond.

The systemproposedhere includestwo main parts:
�rst, a pre-interactionpreparationphasewhich converts
raw input elevationsand colors into processedand �l-
tered tile hierarchieson disk, and second,a runtime
view-dependentoptimization and rendering algorithm
that incrementally updatesthe neighborhoodsof ge-
ometry or texture tiles. The overall runtime state is

(a) (b)

d

(c)

Fig. 2. A 4-8 meshillustrating different levels of resolution.Part
(a) shows a coarse,uniform re�nement,which is effectively a grid of
squares(blue) with distinguisheddiagonals(green).Part (b) is one
level �ner everywhere.Note the blue squaresare rotated45� and
scaledby

p
1=2. Part (c) shows the selective re�nement of (b) to

add the diamond(yellow) with centerd.

depicted in Figure 3. The goal of this design is to
prioritize coarseningand re�nement work that is most
urgently neededeach frame to stay near the target
triangle count and texel-to-pixel ratio. The paging and
view-dependentoptimizationstatesare almost identical
for geometryand texture. Both include a hierarchical
disk database,cachesfor compressedI/O blocks and
decompressedtile rasters,a selectively-re�ned diamond
mesh, and the dual split-merge priority queuesthat
orderthe incrementalupdatesto thediamondmesh.The
block and tile cachesuse a least-recently-used(LRU)
replacementstrategy. In addition,geometrypatchesmap
to theavailabletexturethat is closestto its idealtexel-to-
pixel ratio. Since updatesto patch-to-texture mappings
involve expensive transfersof new texture coordinate
arraysto AGPmemory, a singlepriority queueis usedto
budgettheseupdatesperframe.Triangle-patchdiamonds
andtexture-objectdiamondsareoptimizedindependently
using dual queues.Both of theseoptimization loops is
similar to the original ROAM optimizationloop for tri-
angles.Splits and mergesschedulefuture heavy-weight
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Fig. 3. Thesystemstatefor frame-to-frameoptimizationof geometry
and texture includesdisk hierarchies,least-recently-usedcachesof
blocks and tiles, dual-queueoptimizers for patchesand texture
objects,anda priority queueto budgetupdatesto thepatch-to-texture
mappings.

activity, including the retrieval of data from cacheor
disk as needed,and the uploadingof patch or texture
data to specialgraphics-hardware memory. The paging
and uploadwork can be tightly controlledper frame to
achieve an application-speci�cbalanceof the tradeoff
betweenfull optimizationper frameandfast,evenframe
rates.The overall optimization and renderingloop per
frame is performedin phasesas follows:
For each frame f

1) Updatethe frustum-cullstateandpriorities for the
active diamonds:

Updatefrustum for new frame (do not upload
to graphicshardwareyet).
Updatefrustum-cull IN/OUT labelsfor all di-
amonds.
Update split/merge priorities for texture and
geometrydiamonds.

2) Perform texture-object optimization loop (uses
dual split-merge priority queues).This will sched-
uleheavy-weightoperationsthatwill beperformed
later:accessto texturetiles from cacheif available,
andpagingfrom disk asneeded.The optimization
loop will terminateearly to limit the numberof

pagingand texture uploadoperationsper frame.
3) Perform geometrypatch optimization loop (uses

a second dual queue). Geometry tiles will be
scheduledto be accessedfrom cache or paged
from disk as needed.The optimization loop will
terminateearly to limit the numberof pagingand
uploadoperationsper frame.

4) Determine desired patch-to-texture mappings.
Compute priorities of patch-to-texture mapping
updates.

5) Performpatch-to-textureupdateloop (usesasingle
priority queue). Updates will be scheduledfor
later, and limited to �x ed budgetper frame.

6) Swap the display buffers. Upload new frustum
to graphics hardware. Launch rendering of un-
changedpatches(non-blockingcalls).

7) Performscheduledpaging/uploadoperations(con-
currentwith renderingof unchangedpatches).

8) Launchrenderingof updatedpatches(this render-
ing will be performedconcurrentwith phases1
through5).

g

In order to realize this overall optimizationand ren-
deringstrategy, it is importantto understand:

The core data structur e for diamonds: While
severaldatastructureshave beendevisedto support
4-8 re�nement, e.g. [8], [11], [2], we found that
additional streamliningand uni�cation was possi-
ble.This paperintroducesa diamonddatastructure,
in which eachdiamondelementsimultaneouslyhas
unique associationswith a vertex (its center),an
edge(its distinguisheddiagonal),andaquadrilateral
face of a 4-8 re�nement mesh.A diamondrepre-
sentsthe pairing of two right isoscelestrianglesat
thesamelevel of detail in the4-8 meshthatsharea
baseedge.Sincebasicoperationson the 4-8 mesh
musttreatthesediamondsasa unit, it is logical and
ef�cient to use the diamondas the backbonedata
structurerather than bintree triangles.Section III
provides details on the diamondstructureand its
usein 4-8 incrementalmeshadaptation.

Standard diamond parameterizations and level-
to-level mappings: Both geometryandtexturesare
treatedas small regular grids, called tiles, de�ned
for eachdiamondin thehierarchy. Tiles at a level of
resolutionmatchingthe input dataareeithercopied
or resampled.Coarsertiles arecomputedusinglow-
pass�ltering in an out-of-coretraversal.Finer tiles
canbeobtainedusing4-8 subdivision [30] with the
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optional addition of proceduraldetail. The basic
propertiesof tiles, including standardorientations
and level-to-level mappings,are describedin Sec-
tion IV.

Out-of-core indexing usingSierpinski curves:For
ef�cient input andoutput, �les anddisk blocksare
laid out using a diamond indexing schemebased
on the Sierpinski space-�lling curve. Sierpinski
indexing, and basic data traversalsfor out-of-core
preprocessingaredescribedin SectionV.

Filtering operations using diamond raster tiles:
Thetechniquefor computingcoarserand�ner tiles,
and generally computing local image-processing
operations,is based on a simple neighborhood-
gatheringprocedureandleast-recently-usedcaching
strategy. Whencombinedwith tile traversalin Sier-
pinski order, very ef�cient andgeneralpreprocess-
ing of planetary data can be performed using a
small, �x ed memory footprint. An extensive se-
quenceof imageprocessingoperations,usedfor au-
tomatedlake detection,demonstratesthe �e xibility
of this approach.The �ltering andcachingmecha-
nism for preprocessingis coveredin SectionVI.

Geometry-speci�c �ltering, layouts and per-
frame optimization: For geometric rendering,
patchesof 256,1024or moretrianglesarestoredas
indexed vertex arraysin Sierpinskiorderfor highly
ef�cient rendering on graphics hardware. Using
uniform re�nement, any power of four increasein
trianglecountwill resultin conformantmeshes[25],
[17]. We are able to achieve triangle throughput
close to the practical limits on recent PC video
cards. Section VII outlines how patchesare laid
out and updatedvia the cacheof elevation tiles.
Dual priority queues,similar to thoseof theROAM
algorithm [8], drive the frame-to-frameupdatesof
the adaptive re�nement of displayedpatches.

Texture-speci�c �ltering and optimization: The
adaptive 4-8 textures, de�ned in detail in Sec-
tion VIII, �ll eachdiamondareawith a regular-grid
imageraster, renderedusing bilinear interpolation.
Neighboringtiles shareboundarysampleson their
mutual edges.We allow eachROAM leaf triangle
patchto independentlychoosewhich texture level-
of-detail to map to, basedon its estimatedpixel
area for the current view transform. A mapping
from the triangle patches'parameterizationto the
texture diamond's parameterspaceis computedas

neededwhen this level-of-detail selectionchanges.
This changerequiresan updateof the vertex array
texture coordinatedata stored in special graphics
hardware memory. Since this is an expensive op-
eration,updatesare budgetedper frame basedon
a simple priority queue.The texture-objectre�ne-
ment is updatedindependentlyfrom the triangle-
patchhierarchy, usinga second,similar dual-queue
optimizer.

Adding procedural detail: Finally, additionalgeo-
metric detail is addedusinga smoothinterpolatory
subdivision schemeon tiles, combinedwith random
displacements.Theseoperationsare shown to be
fast enoughto adequatelyfeed view-dependentre-
�nement duringrapid �y-o versat low altitudes,and
provides a fair quality proceduralterrain.The pro-
ceduralre�nementschemeis coveredin SectionIX.

Overall, this approachto forming tile hierarchiesand
accessingthem during frame-to-frameincrementalup-
datesresults in a visually seamless,high quality dis-
play of arbitrarily large terrain and imagery databases.
Someimplementationdetailsand numericalresultsare
presentedin SectionX, but the ultimate proof is to see
the system in action on a huge data set. The visual
appearanceis in our experienceconsistentlyvery high.
Indeed,we were pleasantlysurprisedthat neither per-
pixel blending of texture level-of-detail nor per-vertex
blending of geometric data seemsto be needed;we
believe this is largely due to the gradualfactor-of-two
changesin informationcontentbetweenlevels.

I I . RELATED WORK

Our previous paperthat introducesthe basicdiamond
datastructureandthe4-8 texturehierarchiesis [15]; the
core material from that work is included in this paper
for completeness.Topics added in this paper include
a more completeoverview of the frame-to-framepro-
cessingloop, a descriptionof the extensive out-of-core
imageprocessinginfrastructuredevelopedfor preparing
planetarydatasetsfor later visualization,and the useof
interpolatoryre�nement with randomdisplacementsto
provide pleasingadditionaldetailsor completesynthetic
terraingeneration.

A greatvarietyof geometriclevel-of-detailalgorithms
have been devised for realtime rendering of massive
terrainsand other datasets.An overview of many his-
torical methodscanbefound in [23]. Themostcommon
meansof organizinggeometryareTriangulatedIrregular
Networks (TINs) [13], [27], [14], Hierarchiesof Right
Triangles (HRTs) [22], [10], and NestedRegular-Grid



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTERGRAPHICS,VOL. 11, NO. 2, MARCH/APRIL 2005 5

(NRG) methodswith per-pixel and per-vertex blending
for seamlessresolutionchanges[21]. GenerallytheHRT
and NRG methodscan be implementedto have greater
performanceand lower memory use per triangle, but
requirea modestincreasein triangle budget to achieve
the sameaccuracy [10]. For the reasonsoutlinedearlier,
we focuson regular-grid representationsandHRT view-
dependentadaptations,and review the relevant papers
here.

First it is importantto note that HRTs are equivalent
to adaptive 4-8 meshes.An early paper using HRTs
for view-dependentdynamic meshingwas Lindstrom
et al. [18]. They utilize an elegant block-adaptive re-
�nement using frame-to-framecoherence,followed by
a �ne-grained bottom-upvertex-deletionmethodto per-
form the �nal reduction of the mesh size for display
purposes.Duchaineauet al. [8] introducea dual-queue
algorithm (ROAM) to incrementally split and merge
HRT elementswhile maximizing the use of frame-to-
frame coherencefor frustum culling, priority computa-
tions, mesh updatesand triangle stripping. Lindstrom
and Pascucci [19] simplify the overall HRT process-
ing to a minimal triangle bintree recursionper frame
that requires no special effort to maintain crack-free
meshes,producesa single generalizedtriangle strip as
output, and uses a novel vertex indexing schemeto
automatically make out-of-core accessef�cient using
an existing operating-systemvirtual memory system.
They extendthis [20] to allow smootherview-dependent
meshesthroughinterpolation,and testadditionalspace-
�ll indexing strategies.GerstnerusesSierpinskiindexing
for triangles,andidenti�es theresultingduplicateindices
using a simple statemachine.The methodis intended
for useduringrecursive traversalof thetrianglebintrees,
andrequiresexplicit links in thevertex databaseto avoid
gapsin thedisk or memorylayout.Pajarola[24] utilizes
a restrictedquadtreetriangulation,similar to anadaptive
4-8 mesh,for terrainvisualization.

A number of view-dependentoptimizers have been
devisedthat usecoarse-grainedselective re�nement.An
early work by De Floriani and Puppo [12] formally
describeshow to build hierarchicaltrianglepatchesthat
match on the edges and can be selectively re�ned.
Pomeranz[25] demonstrateshow the ROAM algorithm
can be extendedto utilize pre-computedHRT patches
in placeof individual trianglesto betterexploit modern
graphicshardwarewhile maintainingcrack-freetriangu-
lations.Levenberg [17] extendsthis further by allowing
HRT patchesto be computeddynamicallyduring inter-
action. Cignoni et al. [3] introduce the use of HRT
selective re�nement with TIN patchesper right-triangle
region.

Large texture processinghasbeenattemptedby sev-
eral researchers.Williams [31] introducesthe mipmap
methodof pre�ltering texture levels of detail,which are
imagesof increasinglyreducedresolutionarrangedas
a pyramid. Starting with the �nest level, eachcoarser
level representsthe imageusingonequarterthe number
of texels (half the numberof texels in eachdimension).
Per-pixel renderingwith a mipmapis accomplishedby
projectingthepixel centersinto mipmapspaceusingtex-
ture coordinatesand cameratransformations.Typically
a renderedpixel is colored using a variant of trilinear
interpolation of eight texels taken from two adjacent
levels of the mipmaphierarchy.

Tanner et al. [28] introduceclipmaps,an extension
of mipmaps that also utilizes a factor-of-four texture
pyramid,but allows arbitrarily large out-of-coretextures
to bepagedinto the in-memorypyramid.This algorithm
utilizesthefactthatacompletemipmappyramidis rarely
usedduring therenderingof a singleimage(particularly
in terrain rendering),and much of the pyramid can be
clippedaway, allowing muchlarger texturesto be used.

Ulrich [29] combines a quadtreeof mipmap and
geometrytiles,calledchunks, to handleout-of-coreview-
dependentmeshingand texturing of hugeterrains.The
texture and geometrychunksare producedin a prepro-
cessingstep and are static during runtime interaction.
Geometrychunksarebasedon adaptive 4-8 re�nement,
with special“�anges” to hide the tiny cracksthat occur
at chunk boundaries.Each chunk is stored in special
graphicsmemoryandcanberenderedwith a singledraw
call. The chunksare re�ned basedon the viewpoint to
meetthedesiredvisual �delity , andarepagedfrom disk.
Similarly, mipmap tiles are loadedand accessedfrom
thegeometrychunksbasedon calculationsof maximum
pixel size in the mipmap. This determinesthe �nest
level of detail that will be used in a mipmap, and
by re�ning the mipmap tiles accordingly, the mipmap
per-pixel blendingwill automaticallygenerateseamless
texture imageryacrosstile boundaries.

Furtherresearchby Döllneret al. integratesclipmap-
like behavior with terrain renderingby using memory-
mappedtexture �les [7]. Their methodutilizes a mul-
tiresolution texture system that works in conjunction
with a multiresolutionmodel for the terrain geometry.
They build a treeof texturepatchesthatis closelyassoci-
atedwith thehierarchicalmodelof the terraingeometry.
The rendering algorithm simultaneouslytraverses the
multiresolutionmodel for terrain geometryand texture
trees, selecting geometry patchesand texture patches
accordingto a user-de�ned visual error threshold.How-
ever, their methodutilizes in-core quadtreesfor texture
storage,resultingin a power-of-four texture hierarchy.
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Anotherclipmap-like system,geometryclipmaps,has
beenshown by LosassoandHoppeto be very effective
for realtimedisplayof hugeterraintextureandgeometry
databases,usinggraphicshardwareto blendbetweenres-
olution transitionssmoothlyandavoid geometriccracks
or visible texture seams[21]. Their system includes
terraindatabasecompressionandpaging,aswell as the
addition of proceduraldetail at scales�ner than the
original data. This algorithm is perhapsthe simplest
known approachto implementa fairly effective large-
scaleterraindisplaysystem,but hasseveral limitations.
Geometryand textures increaseeachlevel by a factor
of four, aswith quadtrees.Thereis no attemptmadeto
allow selective re�nement, as the nestedregular grids
are extremely restrictive in this regard. Frustumculling
in particular appearsto be quite conservative in many
cases,andnarrow �elds of view requireexcessive texture
andgeometryto be residentin limited graphicsmemory
relative to the on-screenaccuracy produced.As with
all clipmap-basedmethods,the techniqueswork best
for nearly planar geometry, and would not apply to
more general topologiesor to height�elds that would
needmore than one nestingneighborhoodfor a given
perspective.

Cignoni et al. [3], [4], [5] have demonstratedthe
ability to displayboth adaptive geometryandtexture of
largeterraindatasetsin real-time.They utilize aquadtree
texturehierarchy anda bintreeof trianglepatches(TINs)
for the geometry. The triangle patchesare constructed
off-line with high-quality simpli�cation and triangle
stripping algorithms, and are selectively re�ned from
scratcheachframe.Texturesaremanagedassquaretiles,
organizedasa quadtree.The renderingsystemtraverses
the texturequadtreeuntil acceptableerrorconditionsare
met,andthentraversesthe correspondingpatchesin the
geometrybintreesystemuntil a spaceerror toleranceis
reached.

Two algorithmson out-of-coreview-dependentmesh-
ing areDeCoroanddPajarola's XFastMesh[6], aswell
as the earlier work of El-Sanaand Chiang [9]. Both
of these deal only with view-dependentoptimization
of geometryin a �ne-grained setting,and do not treat
texture level of detail.

In contrastto this previous work, we seek to max-
imally exploit frame-to-frame coherencewith view-
dependentre�nement, similar to the ROAM algorithm,
but with chunked/patchgeometryandtexturetilespaging
in from disk. High-quality low-pass�ltering is applied
to geometrytiles in addition to texturesso as to mini-
mize geometricaliasingartifactsand to reduceaverage
geometricerror. A new Sierpinskidisk layout improves
coherenceof tile accessand caching, while the 4-8

textures minimize visible seamsat patch boundaries.
Like ROAM, our algorithm can maintainnear-constant
frameratesby optimizingto a trianglebudgetin addition
to selectinga desiredscreenerror tolerance.

I I I . THE DIAMOND DATA STRUCTURE

Underlying all the work in this paper is the notion
of a diamond, which is uniquely associatedwith one
vertex, one edge,and one quadrilateralface in a 4-8
meshhierarchy. Figure 4 depictsa diamondd with a
standardorientationand labeling of its ancestorsa0:::3

and children c0:::3. By a parent of diamondd we mean
a diamondonelevel coarserin the4-8 meshwhosearea
overlapsd. Similarly, a child of d is one level �ner and
overlapsd.

d

a0

a1

a2

a3

ancestorsof d

d

c0

c1c2

c3

childrenof d

Fig. 4. A diamond d (yellow) is shown with respect to its
ancestors(left) and its children (right). By numberingeachof these
counterclockwisearound d, and by placing the quadtreeancestor
(green)asa0 , andthe �rst child c0 just after this, navigation through
the 4-8 mesh becomesstraightforward. Note that the two parent
diamonds(blue outline) are the right parent,a1 , and the left parent,
a3 . The childrenof d arec0::: 3 , outlined in red.

After experimentingwith a number of implementa-
tions of 4-8 meshdatastructuresthat supportselective
re�nement,includingpointer-free“pure index” schemes,
we found after performancepro�ling that the fastest
choice is simply to keep pointers to the children and
ancestors,and allocate diamond records in arrays of
several thousandat a time to avoid per-record heap
allocationoverhead.Navigation to a diamond's parent,
quadtreeandolder cornerancestors,aswell aschildren,
is thena matterof following single links, which will be
denotedd ! ai andd ! ci respectively for i = 0: : : 3.
Traversing to neighborsat the samelevel of resolution
turnsout to be simpleaswell.

To get to diamondd's neighbord0 acrossthe child
d ! c0 edge, Figure 5 shows that both d and d0

are children of d's right parent d ! a1. Indeed, d0

is the child of d ! a1 just counterclockwiseof d.
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Since moving to neighborsis a frequent operation,it
can improve performanceto stored's index as a child
with respectto both parenta1 anda3; theseindiceswill
be referredto as d ! i 1 and d ! i 3, respectively. This
meansthat the assertiond = d ! a1 ! cd! i 1 should
alwayshold for the right parent,andsimilarly usinga3

and i 3 for the left parent.The pseudocodefor moving
to the c0 neighborof d is thensimply

i ( (d ! i 1 + 1) mod 4
d0 ( d ! a1 ! ci

Child edgesd ! c1:::3 are treatedsimilarly.

d

d0

d ! c0

d ! a1

d ! a0

i 1

(i 1 + 1) mod 4

Fig. 5. To get to neighbord0 of diamondd acrossits child c0 edge,
�rst walk up to its right parentd ! a1 . Now d0 is the child of a1

that is onestepcounterclockwisefrom d. For fastercomputation,d's
child index i 1 within a1 is kept in d's record.The counterclockwise
child index is i 1 + 1, taken mod 4.

Now that neighbor-�nding is established,the process
of adding a child diamond,say c = d ! c0, begins
by �nding the neighbord0 asabove, which is the other
parentof c. If d0 is missing,thenit shouldberecursively
addedto its parentd ! a1 at the expectedchild index.
To hookupc properly, �rst notethatits quadtreeancestor
c ! a0 is d ! a1, the mutualparentof c's two parents
d andd0. This determinestheexactorientationof c (just
rotateFigure5 135� clockwise),andthusindicateshow
all of its ancestorsshould be �lled in, as well as its
parent's backpointers:

c ! a0 ( d ! a1
c ! a1 ( d
c ! a2 ( d ! a0
c ! a3 ( d0

d ! c0 ( c
c ! i 1 ( 0

d0 ! c3 ( c
c ! i 3 ( 3

The last two assignmentsfollow from the observation
that d and d0 both have d ! a0 as their quadtree
ancestor. As before,similar proceduresexist for creating
childrenc1:::3 of diamondd.

To deletea childlessdiamondd, thepointersto d from

its parentsmustbe cleared:

d ! a1 ! cd! i 1 ( null
d ! a3 ! cd! i 3 ( null

Any adaptive 4-8 meshmaybeconstructedby sequences
of child additionsandchildless-diamonddeletions.Con-
venienceoperations,such as deleting a diamond with
children, may be implementedeasily using thesebasic
operations.

The�nal idearequiredto begin usingdiamondmeshes
is the methodto hook up the initial base(i.e. coarsest-
level) mesh. Given any manifold polygonal mesh, a
diamondbasemeshmay be constructedby creatinga
diamond per vertex, face and edge. Vertex diamonds
exist only to supplytheir centerpointcoordinate—nouse
is madeof their child or ancestorlinks. Facediamonds
link to their children, which are the edge diamonds.
Conversely, the edge diamondslink to their parents,
the face diamonds,as well as their other ancestors,
which arevertex diamonds.For polygonalmesheswith
non-quadrilateralfaces,the numberof children of face
diamondswill not be four, and neighbor-�nding will
require arithmetic modulo the numberof edgesin the
face. Indeed,the neighborof d (e.g. d0) in the child-
addition proceduremay needto examine which of its
parents is in common with d in order to select its
appropriatechild index. In contrast,for the non-base-
mesh caseof Figure 5, and for cubical basemeshes
laid out carefully, d0 alwaysuseschild index 3. For this
reason,we choosea cubical basemesh for planetary
geometry, which hasall quadrilateralfaces.

The proper layout for a basecube divides the edge
diamondsinto four setsof three,as shown in Figure 6,
with each3-set sharinga commonvertex diamondas
their “quadtree”ancestor.

Fig. 6. For planetarybasemeshes,a cubeis used,with diamondsfor
eachvertex, faceandedge.Theedgediamondsshouldbeorientedas
shown, so that their a0 (quadtree)ancestorsare one of the four red
vertex diamonds,andthefacediamondsaretheir parents.Threeedge
diamondssharingthe centermostvertex diamondare highlightedin
blue.

IV. GEOMETRY AND TEXTURE TILES

Given the basicdiamondstructuresjust outlined,it is
possibleto createselectively-re�nable objectsby associ-
atingspatialcoordinatesandcolorsto thevertex of each
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diamond.However, this kind of �ne-grainedtreatmentof
geometryand color is very inef�cient for paging from
disk and for renderingon newer graphicshardware.To
overcomethis, small regular grids of pointsandcolors,
called tiles, will be associatedwith eachdiamond.The
centralideasrequiredto work with tiles are to:

1) set up a parametriccoordinatesystemwithin a
diamond,and determinethe mappingfrom child
to parentdiamondparameters,

2) perform low-pass�ltering to createhigh-quality
coarsenedtiles, and

3) createadditionaldetailthrough4-8subdivisionand
optionalproceduraldisplacements.

For eachdiamond,de�ne its local coordinatesystem
(u; v) 2 [0; 1]2 to have its origin at thequadtreeancestor
vertex d ! a0, the u axis moving from the origin to
the right parentd ! a1, and the v axis moving from
the origin to the left parent d ! a3. A diamond d
overlapsonehalf of eachof its children,in the shapeof
a right isoscelestriangle. The relationshipbetweend's
(u; v) coordinatesandthosein eachchild is depictedin
Figure7.

d

c0

c1c2

c3

Fig. 7. The mapping of diamond (u; v) parametersbetweena
diamondd andits childrenis depictedusingarrows to indicatetheu
axes.Thesecoordinatesystemsarestandardizedto be right-handed,
with the origin at the quadtreeancestorvertex. Each diamond's
parametriccoordinatesarein theunit square,that is, (u; v) 2 [0; 1]2 .

To move information from �ner to coarsertiles for
low-pass�ltering, the tile for d mustcollect information
from half of eachchild. An af�ne mappingfrom child
ci 's parameters(ui ; vi ) to d's parameters(u; v) would
thenbe

(u; v) = (uc; vc) + ui (ua; va) + vi (� va; ua)

wheretheorigin (uc; vc) andui directionvector(ua; va)
aregivenin TableI. Thesechild-to-parentmappingsmay
be composedtogether to map to coarserancestors,a
processwhich will be usedto obtaintexture coordinates
in SectionVIII.

Low-pass�ltering for diamondd cannow be de�ned
ascollecting tile arrayentriesfrom the appropriatehalf
of each of the four children, and placing these into

child uc ; vc ua ; va

c0 1; 0 � 1
2 ; 1

2

c1 1; 0 1
2 ; 1

2

c2 0; 1 1
2 ; � 1

2

c3 0; 1 � 1
2 ; � 1

2

TABLE I

ORIGIN AND ui AXIS FOR CHILD-TO-PARENT MAPPINGS.

two arrays arrangedaccordingto the local coordinate
systemof d. As shown in Figure 8, one set of values
will be the cell-centeredentries(hollow dots),while the
other valuesare vertex centered(solid dots). The new

interior weights

4
8

1
8

1
8

1
8

1
8

cornerweights

5
8

1
8

1
8

1
8

Fig. 8. Low-pass�ltering is performedby collecting both cell-
centeredvalues(hollow dots)andvertex-centeredvalues(solid dots)
from the four children of a diamond.One child is highlighted,and
the weight masksfor the interior andcornercasesaregiven.

vertex-centeredvalueswill be storedin d's tile, andare
computedusing weightedaveragesof the old cell- and
vertex-centeredvaluesobtainedfrom the children.Note
that for the weightingmaskchosen,thereare four cell-
centeredvalues(eachmarkedwith anX) thatareneeded,
but are outsidethoseavailable from the four children.
While it is possible to query four additional tiles to
obtain thesevalues,only a single value from eachtile
would be used,and hasonly a tiny impact on quality.
Thereforewe chooseinsteadto use a slightly altered
weightmaskfor thefour cornersof d (SectionVI avoids
thespecialcaseon thecorners,andsupportsmuchwider
stencils for low-pass �ltering). For geometry tiles to
avoid crackson patchboundaries,SectionVII discusses
which parentvaluesmustbesubsamples(simplecopies)
of the vertex-centeredvaluesfrom the children.

Performing 4-8 mesh re�nement with tiles is very
similar to low-pass�ltering, only performedin reverse.
Themaindifferenceis thatanew diamondchild tile must
collect valuesfrom its two parents,and for subdivision
schemessmootherthan linear or bilinear interpolation,
ghost values are needed.Section VI discussesout-of-
core processingfor coarse-to-�nere�nement in general
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(without ghostcells),while SectionIX coversthespecial
caseof fast proceduralterrain generationusing ghost
cells.

V. DIAMOND SIERPINSKI INDICES AND PAGING

When accessinga large terrain databasefrom disk
during interaction,performanceis highly sensitive to the
spatialcoherenceof the datalayout,andis improved by
theuseof hierarchicalspace-�lling curves[20]. With the
kind of tile-based,explicit paging schemethat we are
pursuing,we needa fast and local meansof mapping
diamondsto indices that provides such a good layout,
and works well with incrementalselective re�nement
(i.e. diamond child additions and deletionsdriven by
dual priority queues).The mostnaturalandcoherentof
the space-�lling curves to apply to 4-8 meshesis the
Sierpinskicurve,depictedin Figure9. Recallfrom Knuth
[16] that any complete binary tree may be assigned
unique indices by setting the root node to 1, and then
for every node with index k, recursively set it' s child
indices to be 2k and 2k + 1 respectively. Performing
this for thetrianglebintreegivestheindicesshown (note
that left branchesaretaken�rst on even levels,andright
branches�rst on odd levels).

1

2 3

4
5 6

7

8 9

10
11 12

13

14 15

Fig. 9. Sierpinskiindicesfor bintreetrianglesarecomputedrecur-
sively from their parentindex. While the layout is highly coherent,
the indicesaremappedto triangles,not diamonds.

A challengewith theseSierpinskiindicesis that they
are associatedwith the triangles of a 4-8 mesh, not
the diamonds(or equivalently, the vertices).The most
obvious choice,associatingthe index with the triangle's
split point, createstwo indicesperdiamond.Associating
with any of the three corners results in even worse
duplication. It turns out that associatingthe triangle's
index with oneof themidpointsof theshorteredges,say
the left side,provides the one-to-oneandonto mapping
that is needed.Figure 10 provides a visual proof that
all diamondsat a given level of resolutionare covered
exactly once by the left edgesof bintree trianglesone
level coarserin the 4-8 mesh.

To compute the Sierpinski index of a diamond d
ef�ciently duringselective re�nement,thediamondmust

Fig. 10. The4-edgeneighborhoodshown is coveredexactly onceby
the diamondsassociatedwith the left edgesof the bintreetriangles.
This patternrepeatsto cover the plane.The trianglesare shown in
outline, the diamondareasin alternatingshades,and the diamond
centersby markingthe insideof their respective triangle's left edge.

be mappedto its Sierpinskitriangle,namelythe bintree
triangle whoseleft edgehas the diamondvertex at its
center. Fromthis Sierpinskitriangle,its parentSierpinski
triangle is determined,and then the diamondof its left
edgeis the “Sierpinski parent” dS of d. Thereare two
cases,asshown in Figure11, dependingon whetherthe
distinguisheddiagonalof d's quadtreeparentd ! a0 is
horizontal or vertical. The pseudocodeto computed's

quadtreevertical split

d
d ! a3

d ! a0

dS

( i + 1)
mo d 4

i

horizontalsplit

d
d ! a3

d ! a0

Fig. 11. The SierpinskiparentdS of a diamondd is determined
basedon two cases,dependingon the orientationof d's quadtree
ancestor's distinguishededge.On the left, this edgeis vertical, and
the counterclockwiseneighbor of d's left parent is the Sierpinski
parent.On the right, the Sierpinskiparentis simply d's left parent.

Sierpinskiindex d ! k is then:

d3 ( d ! a3

if d3 ! a1 = d ! a0, then
dS ( d3 ! a1 ! c(d3 ! i 1 +1) mod 4
...createdS as needed...
d ! k ( 2dS ! k + x

otherwise
dS ( d3

d ! k ( 2dS ! k + y
wherefor even levels of the 4-8 mesh,(x; y) = (1; 0),
and for odd levels (x; y) = (0; 1).

A diamond's index is stored in 64-bits, where the
upperbits representthe Sierpinski index followed by a
oneanda stringof zerosto theend.To mapa Sierpinski
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index to input and output of �les, blocks and tiles, we
considera Sierpinskiindex to be left-shiftedso that the
leading“1” bit is just removed in a 64-bit register, and
placethat bit just to the right of the leastsigni�cant bit
of the index in order to mark the end of the relevant
bits:

i ( (i � 1)j1
MSB = 1 � 63
while ( (i&MSB) = 0 ) i ( i � 1
i ( i � 1

The bits arenow of the following form:
b63b62b61:::bN 100:::0

where N is the least signi�cant bit of the Sierpinski
index after the left-shift procedure.

This bit string can now be treatedlike a generalized
directorypathname,at �rst literally describingdirectory
branches,thena �le name,followed by the block index
and tile numberwithin the block. We explain using the
caseN = 37:

b63b62b61b60 g directorybranch1
b59b58b57b56 g directorybranch2
b55b54b53b52 g directorybranch3
b51b50b49b48 g �le name
b47b46b45b44b43b42b41b40 g block within �le
b39b38b3710 g tile within block

The“1” markbit is allowedto bein any of therightmost
four tile bit positions.A specialroot �le is madein the
top-level directory to catchall the blocks and tiles that
have insuf�cient bits to de�ne a full 4-bit �le index. This
leadsto directorieswith up to 16 subdirectoriesand16
�les each,whereeach�le containsup to 256 read/write
blocks, eachof which containsup to 30 tiles from 4
different levels of detail. Branchingfactors,block sizes
and so on can be tunedfor performance,but we found
the arrangementgiven here to be very effective on the
systemswe tested.

When a tile is requested,it is returnedimmediately
if it is in main memory. If it is in a compressed
read/writeblock in memory, thetile is decompressedand
placed in the tile cache.If the block is missing from
the cache,it is read into the block cachefrom disk,
and the tile is extracted.If this processfails to �nd a
tile, the tile is manufacturedusing 4-8 subdivision and
optional proceduraldisplacements.Since elevation and
texturetiles aresimple2D rasters,any numberof known
compressionschemescanbe applied.

For this systemwe usea least-recently-usedstrategy
for tile and block cachereplacementdecisions.Cache
sizesshouldbe determinedby balancingvariousappli-
cationandsystemmemoryneeds,sinceof coursethereis
incrementalgain for any increasein a particularcacheas

long asanothercacheis not decreased.For our system,
we found a total cachesize of a hundredmegabytes,
divided evenly betweencompressed-tileblocks and un-
compressedtiles, providesexcellentperformance.

VI . OUT-OF-CORE PREPROCESSING OF PLANETARY

DATA

Beyondthesimplelow-pass�ltering mechanismgiven
in Section IV, it is important for applicationsto be
able to performgeometry-and image-processingopera-
tions on tile hierarchiesthat involve local computations
(convolutions,min/max,differences,crossproducts,etc).
Operationscan generallybe classi�ed into threetypes:
�ne-to-coarse (e.g. low-pass �ltering, wavelet analy-
sis), same-level (e.g.shading,imageanalysisoperations
like median �ltering), and coarse-to-�ne (e.g. surface
re�nement, wavelet reconstruction,procedural terrain
generation).All operationsare envisioned as reading
from an input variable(or variables),and writing to an
output variableone tile at a time. Generallytheselocal
operationsinvolve somestencil size, such as a 3 � 3
neighborhoodof elementsfrom thesamelevel for simple
median�ltering. To performtheseoperations,theout-of-
coreprocessis to:

Traverse output tiles in Sierpinski order: for
same-level operations,outputtilesmaybeprocessed
at any level of detail �rst, or indeed in parallel,
sincelevels do not dependon eachother. For �ne-
to-coarseoperations,processingmuststartwith the
�nest level, then proceedcoarser. The order is not
strictly �x ed, but may be performedon demand
for particularsubregionsof moreurgent interestto
an application.The gatheringoperationsdescribed
below canbeusedto inducetheminimumnecessary
tile computationsfor a desiredset of output tiles.
Similarly, for �ne-to-coarse operations,gathering
operationscanberecursively appliedto performthe
minimum requiredwork for a desiredsubsetof the
possibleoutputs.In all cases,whenmultiple output
tiles are selected,they are traversedin Sierpinski
order to maximizetile-cachecoherence.

Gather dependentinput tiles for the output tile:
the coarse-to-�ne, same-level and �ne-to-coarse
operationsrequire that certain input tiles in the
tile neighborhoodbe recursively computed �rst.
Thesedependenttiles arecomputedone-by-oneand
copiedwith appropriatere-orientationand transla-
tion into a temporarybuffer, forming a singleraster.
Thesedependenciesand mappingsinvolve simple
traversalsusing the diamonddatastructure.
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Perform local operations to create output tile:
once the input tile information has beengathered
into a single temporaryraster, the requestedopera-
tion is performed.A wide varietyof operationswill
�t within this framework, andcanbe implemented
throughcall-backsso that applicationscan extend
the setof operations.

Maintain a cache of recently used tiles: All
tile accessis performed through a fetch system
that looks �rst in cache (keyed by the variable
name and Sierpinski index of the tile), then on
disk, and if both of these fail, compute the tile
usingwhatever dependenttiles must recursively be
computed.Newly computedtiles aremarkedsothat
they will be written to disk whenthey areaboutto
be recycled from the cache.Overall, any data�ow
that can be describedas a directed,acyclic graph
on variablenamesandoperationscanbe evaluated
throughthis mechanism.

In theprevioussection,thestandardtile parameteriza-
tion wasgiven for diamonds.Thesemappingsallow the
threegatheringoperations(�ne-to-coarse,same-level and
coarse-to-�ne)to be implementedwith neighbor�nding
and �x ed tables of level-to-level parametermapping
origins and u-axis vectors.For local-operationstencils
that do not exceedabouthalf the width of a single tile,
only theimmediateneighborsof a diamondor its parents
areaccessed.

Fine-to-coarsetile gatheringis depictedin Figure12,
with themappingsspelledout explicitly in TableII. The
valuesin this tablearetheorigin andu axisvectorof the
variouschild diamondcoordinatesystemswith respectto
theoutputdiamondd's coordinatesystem.Twelve tilesat
the child level arereadfor a particularoutputdiamond,
and are copiedto a temporaryraster(outlined in pink)
for useby the local-operationprocessing.The mappings
in Table II must be scaledand biasedappropriatelyfor
the tile rastersizesusedin the application.Stencilsthat
extend up to half the width of the output diamondare
supported.This avoids the cornercasesthat were dealt
with in an ad-hocfashionpreviously in Figure8.

The mappings in Table II, as with Table I given
earlier, arede�ned by the origin andoneaxis vectorof
a child's parameterizationgiven with respectto output
diamondd's parameterization.The neighborsd0:::3 can
be obtainedas follows:

i 0 ( (d ! i 1 + 1) mod 4; d0 ( d ! a1 ! ki 0

i 1 ( (d ! i 1 � 1) mod 4; d1 ( d ! a1 ! ki 1

i 2 ( (d ! i 3 + 1) mod 4; d2 ( d ! a3 ! ki 2

i 3 ( (d ! i 3 � 1) mod 4; d3 ( d ! a3 ! ki 3

d

c0

c1c2

c3

d0
c0

c2

d1

c3

c1
d2

c2

c0

d3

c1

c3

Fig. 12. General�ne-to-coarseprocessingis performedby collecting
both cell-centeredvaluesand vertex-centeredvaluesfor the region
outlinedin pink, processingtheseaccordingto theoperationdesired,
thenstoringthe resultsat thevertex-centeredlocationsfor theoutput
tile d, shown in yellow. Diamondd's four neighborsd0::: 3 (shown
in green)as well as d are usedto navigate to the twelve child tiles
required.The u; v parameteraxes of eachtile are shown to explain
the mappingsin Table II.

The various child tiles may be accesseddirectly from
theseneighbors,while TableII providesthe transforma-
tion into theoutputtile d'sparameterspacesothatvalues
may be gatheredin the right locations.

child uc ; vc ua ; va child uc ; vc ua ; va

d0 ! c0 0; � 1 1
2 ; 1

2 d2 ! c2 1; 2 � 1
2 ; � 1

2

d ! c0 1; 0 � 1
2 ; 1

2 d ! c2 0; 1 1
2 ; � 1

2

d0 ! c2 1; 0 � 1
2 ; � 1

2 d2 ! c0 0; 1 1
2 ; 1

2

d1 ! c3 1; 0 1
2 ; � 1

2 d3 ! c1 0; 1 � 1
2 ; 1

2

d ! c1 1; 0 1
2 ; 1

2 d ! c3 0; 1 � 1
2 ; � 1

2

d1 ! c1 2; 1 � 1
2 ; 1

2 d3 ! c3 � 1; 0 1
2 ; � 1

2

TABLE II

FINE-TO-COARSE TILE MAPPINGS (ORIGIN AND u i AXIS SHOWN).

A similar mappingis obtainedfor same-level process-
ing, as shown in Figure 13. The same-level mappings
require accessingneighborsof neighbors.Let d ! di

denotethe neighborof d acrosschild i 's edge,i.e. the
neighborthathasthatchild in common.Thepseudocode
given earlier shows how to determinetheseneighbors.
The neighborsd4:::7 cannow be determinedas:

d4 ( d ! d0 ! d2

d5 ( d ! d1 ! d1

d6 ( d ! d2 ! d0

d7 ( d ! d3 ! d3

or usingmoduloarithmetic:
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d

d0

d1d2

d3

d4

d5

d6

d7

Fig. 13. Same-level processingis performedby collecting vertex-
centeredvalues for the region outlined in pink, processingthese
accordingto the operationdesired,then storing the results at the
vertex-centeredlocations for the output tile d, shown in yellow.
Diamondd's four neighborsd0::: 3 (shown in green)as well as four
of their neighborsareusedas input with the mappingsshown.

d4+ i ( d ! di ! d(2� i ) mod 4

Thereis a secondway to get to eachof theseneighbors,
namely

d4+ i ( d ! d(i +1) mod 4 ! d3� i

Typically this givesexactly thesamediamond.However,
note that when one of d's ancestorsdoes not have
valence4 (for example, the cube cornersin the plan-
etary basemesh),then the two methodsof computing
d4:::7 will yield different answers.Ideally the �ltering
operationsshouldbe adjustedto handlethesecases,but
for simplicity we just blend betweenthe two possible
diamondrastersso as to createa seamlessfunction in
theseneighborhoods.This situationunfortunatelyarises
at all levelsof detailaroundnon-valence-fourbase-mesh
vertices.

Therearesix parent-level tiles thatmustbegatheredto
form aninput rasterfor generalcoarse-to-�neprocessing,
asdepictedin Figure14.

A. Out-of-Core PreprocessingExample:Lake Detection

Lake detectioncan be performedautomaticallyus-
ing image-processingoperationsin sequence.For the
Washington-state10 meter data set we use a �atness
detectorto indicateall potential lake cells, followed by
several imageerosionsteps(eliminatinglake cellswhere
not all of the eight neighborsarelake cells),andending
with a large number of image dilation steps (adding
back �at-neighborhood cells that are adjacent to the
current lake cells). This processingwas performedon
the completedataset in well underan hour, including
shading and hierarchy building, using only a small
memory footprint of less than 100 megabytesfor this
2.4gigabytedataset.Resultsof thedetectionandshading
processareshown in Figure15.

d d

Fig. 14. Coarse-to-�neprocessingis performedby collecting the
cell- and vertex-centeredvaluesavailable from the parent-level tiles
in the region outlined in pink, processingtheseaccordingto the
operation desired, then storing the results at the vertex-centered
locationsfor the output tile d, shown in yellow. Diamond d's two
parentsand four of their neighborsare used as input with the
mappingsshown. The two casesareshown on the left andright.

VII . GEOMETRY PATCHES AND FRAME-TO-FRAME

UPDATES

When replacing individual leaf triangles with small
patchesof say1024triangles,a naturalconcernis thata
lossof adaptivity will result.However, moderngraphics
hardwarecanrenderthousandsof suchpatchesat 50-100
framesper second,which is similar to the performance
for thousandsof single triangles reported for view-
dependentHRT algorithmslessthana decadeago.

From [25], we know that for any uniform re�nement
of a right isoscelestrianglethat is a power of four, such
as 256 or 1024, the patchesof an adaptive 4-8 mesh
will be without cracks. For most ef�cient rendering,
thesepatchesarelaid out asvertex andindexed-triangle
arrays,where both the verticesand trianglesare listed
in Sierpinskiorder, as shown in Figure 16 for the case
of 256 triangles per patch. Note that the 256-triangle
patchhas16 triangleedgesperpatchedge,thusensuring
crack-freeselective re�nement.

For geometry, the triangular patchesare best taken
as only a small fraction of a CPU-cachetile, sincethe
optimalgranularityof thesetwo objectsis quitedifferent.
After testinga numberof sizes,we founda goodtradeoff
to be a tile with 129 or 257 vertices(elevation samples)
per side. For triangular patches,either 256 or 1024
trianglesareused.Figure16 shows a 256-trianglepatch
in relation to a tile with 129� 129 vertices.Note that
for thesesizes, the tile diamond is the third quadtree
ancestorof the patches'diamond.

The low-pass �ltering schemefrom Section IV is
used for elevation tiles, but with some vertices being
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Fig. 15. Detail from the lake detectionprocessingresultsfor the
10 meterWashingtonstatedataset, just north of the peakof Mount
Rainier. Small lakes are a challengeto the noise reductionscheme
employed,sothat two lakesin theupperright weremissed(Adelaide
and Marjorie) due to the number of erosion steps.Lakes Oliver,
EthelJamesandCrescentweredetectedproperly. ElysianFieldswas
detectedasa muchlarger body of waterthanit actually is, probably
becausethatareais �at. Thesecondimageoutlinesthe�ne-resolution
rastertiles on which the operationswere performed,demonstrating
that tile-basedprocessingdoesnot createboundaryartifacts.

d d ! a0 ! a0 ! a0

d ! a0

d ! a0 ! a0

Fig. 16. The Sierpinski layout of a triangle patch, with the
mappingof the patch to its elevation tile. If d is the diamondof
the triangle patch,then the child-to-parentmappingsof SectionIV
can be composedto locate the appropriateelevation values in the
third quadtreeancestor, d ! a0 ! a0 ! a0 .

subsampledto avoid creating cracks during selective
re�nement. It is suf�cient to subsamplethe verticeson
the4 outeredgesof thepatchdiamonds,andallow their
interiors to be smoothedout throughlow-pass�ltering.
For example,in Figure16, the four sidesof diamondd
(in yellow) shouldbe subsampled.

Frustumculling for trianglepatchesis identicalto the
systemusedin ROAM, but we simplify the methodto
useboundingspheresratherthanpie-wedgebounds,thus
reducingby aboutsix the per-plane�oating-point in/out
tests.In addition, since the core data structureis now
a diamondratherthana bintreetriangle, it is naturalto
passfrustum-cull in/out �ags down from the quadtree
ancestor, which have a nestingrelationship,rather than
the parent,which doesn't. We canavoid gettingoverly-

conservative culling by indicating a triangular patch is
out if eitherits diamondis out, or theparentdiamondon
thatpatches'sideis out. As with ROAM, entiresubtrees
of in/out labelswill remainconstantfrom frameto frame
if its root diamondstayseither out or all in from the
previous to the current frames,and henceno subtree
work is needed.

Similar to ROAM, dual-queuesare usedto prioritize
respectively diamond split and merge activity. Unlike
the ROAM base priority that is sensitive to surface
roughness,we only use the estimatedscreensize of
the diamondasits split/merge priority, so asto perform
geometricantialiasinggiven the extremelyhigh triangle
countsavailable.

VI I I . 4-8 TEXTURES FOR TRIANGLE PATCHES

Most multi-resolution texture algorithms use a pre-
�ltered quad-treeof textures, where tiles all have the
same number of texels but where quadtreechildren
cover one fourth the area of their parent. Selecting
adjacenttiles where the texels per unit areadiffer by
a factor of four can producevisual discontinuities.Our
methodcreatestwice as many detail levels, allowing a
smoothertransitionbetweenlevels (only factorsof two),
while effectively using the diamondhierarchy for level
traversal.

The initial data set texture is diced into 1282 or
2562 size tiles, which representthe texture at the �nest
level. Low-pass�ltering is performedas describedin
Section IV. The �ltering approachfrom level-to-level
preserves the averageenergy of the original signal to
minimize level-of-detail transition artifacts. Unlike ge-
ometry �ltering, which must subsampleon the bound-
ariesof patchdiamonds,texture tiles appearmorevisu-
ally seamlesswithout any subsampling(subsamplingcan
alter theaverageenergy nearboundaries,thusproducing
visual artifacts).

Eachdisplayedtrianglepatchis evaluatedto determine
its optimal texture resolution.Since patchesare drawn
using a single renderingcall, no more than one texture
tile can be associatedwith a triangle patch.Hencethe
�nest resolutiontexture that can be accessedwill be at
the samediamondlevel as a patches'diamond.For a
1282 texture tile and a 256-trianglepatch,this meansa
maximumof 32 texelsper triangle.Sincegraphicshard-
warewill exhibit differencesin relative texel andtriangle
renderingperformance,we decouplethe geometryand
texture levels of detail. For high triangle performance
relative to texture performanceor memory availability,
fewer than32 texelsper trianglemaybedesired.Ideally
if texture performancewere not a bottleneckwe would
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choosea texel-to-pixel ratio near one, and determine
the texture level of detail using this. Using the child-
to-parentparametermappingfrom SectionIV, one can
iteratively walk to the diamond parent on the side
containing the triangle patch until the desiredtexture
level is reached.The texture coordinatesfor the patch
verticescanthenbe easilycomputedusingthe resulting
compositemapping.

Using the boundingsphereradius previously calcu-
lated for frustum culling, we computean upperbound
on the possible screenarea covered by the triangle-
patch diamond. The maximum screenspacecoverage
occurswhenlookingatadiamondorientedperpendicular
to the view direction. We use as the upper bound on
pixel area2R2, whereR is the projectedradiusof the
diamond's boundingsphere.Using the numberof texels
in the texturediamondcoveredby the trianglepatch,the
texel-to-pixel ratio � is computed.Frame-to-frame,the
patch-to-texture level-of-detail associationsare adjusted
incrementallyusinga singlepriority queue,soasto keep
� closeto 1:0. Higher priority is given to coarseninga
patches'texture associationas � becomesgreaterthan
one,andre�ning becomeshigherpriority as � becomes
lessthanone.This is summarizedby de�ning theupdate
priority as

p(� ) =

(
k� �

p
2k if � � 1

k1=� �
p

2k if � < 1

No updatesshouldbetakenfor prioritiesp(� ) � 0, since
this is the thresholdat which the updatewould result in
� farther from 1:0 than the currentmapping.We keep
to a budgetof 4 to 8 patch-to-texture updatesper frame
to maintainhigh frame rates,sinceeachupdatecan be
expensive.

If thedesiredtexture is not cachedin texturememory,
we use the next coarsertexture level that is available.
When �ner texture objectsare loaded,we keepcoarser
texturesso that the systemcanalways instantlycoarsen
as desired.The texture-objectdiamondsare optimized
frame-to-frameusing a similar dual-queueoptimization
loop that was usedfor triangle patches,using p(� ) as
the split/merge priority, where � is computedfor an
entire texture object as a conservative estimateof the
worst-casepatchthat might mapto it. As with the dual-
queuetriangle-patchoptimization,tile accessandtexture
upload operationsare scheduledfor a subsequentload
phase,andare limited by a per-framebudget.

In the caseof pure height maps(as opposedto full
planetary geometry), it is possible to use automatic
texture coordinategeneration(OpenGL's glTexGen call
or texture coordinate transforms, for example). Our
experiencewith implementationsindicatesthat explicit

texture coordinatesper vertex have higherperformance,
at some increasein vertex-memory use. This perfor-
mancepenaltyis dueto theexpensive statechangesthat
mustbe madeper texture object,given that texturesare
broken up into many tiles with independentcoordinate
systems.Also, actualhardwareanddriversgenerallyrun
slower when non-identity texture coordinatetransforms
or glTexGenis used.Finally, the useof theseautomatic
texturecoordinateschemesis not applicableto planetary
geometryor othernon-planerbasemeshes.

IX. PROCEDURAL TERRAIN REFINEMENT

The basic one-dimensionalinterpolatory re�nement
usedis thefollowing. Let f i bevaluesbeforere�nement,
wherei is aninteger. Therewill betwiceasmany re�ned
valuesgj de�ned by copying theold valuesverbatimand
usingweightedaveragingto get new midpoints:

g2i = f i

g2i+1 = � 1
16f i � 1 + 9

16f i + 9
16f i +1 � 1

16f i +2

To performtwo-dimensionalre�nement,onecanconcep-
tually apply the onedimensionalre�nement alongeach
row in a raster, and then along eachresultingcolumn.
For 4-8 re�nement, the midpointsare addedevery odd
level, and the edgepoints are then addedthe next even
level. After two stepsthis exactly reproducesthe output
of thecomputationthatworkson oneaxisat a time. The
smoothbasisfunction that resultsis shown in Figure17.

Fig. 17. This �gure depicts the relative effect of one random
displacementin the proceduralterrain generation.It is the smooth
interpolatorybasisresulting from 4-8 re�nement, pseudocoloredto
highlight the negative lobes in the displacement�eld as blue. The
quality of this basis,namely its symmetry, smoothnessand lack of
excessive oscillations,are fundamentalto the overall perceived (and
statisticallymeasured)qualitiesof a proceduralterrain.

To speedup the re�nement processingin this case,
it is possible to avoid the general gather operation
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describedin SectionVI by addingghostvaluesto each
tile (raster elementsthat are duplicated a little ways
into the neighbortile, and maintainthe samevaluesas
their duplicateelements).It turnsout to be impossibleto
maintainsuf�cient neighborsif a tile gathersfrom its two
parents,but only two ghostvaluesmustbeaddedbeyond
the commontile edgevaluesif the tile information is
gatheredfrom thenext-coarsereven-level tile, dueto the
two-stagesubdivision process.

Additional geometricdetail is addedusing a smooth
interpolatory subdivision schemeon tiles, as just de-
scribed,combinedwith randomdisplacementsthatgrow
smaller exponentially as the level-of-detail becomes
�ner. Randomdisplacementsare only addedat even-
level tiles, consistentwith the implementationof the
interpolatory re�nement with ghost values (note that
the ghostvaluesshouldbe displacedthe sameas their
duplicatesin the neighbortile). An example of terrain
generatedcompletelyusing theseproceduralconstruc-
tions is shown in Figure18. Theuseof proceduraldetail
to aid visualizationof actualterrain data(a Mars polar
region) is shown in Figure19.

Fig. 18. A screenshot during navigation through a completely
procedural(synthetic)landscape,usedto demonstratethe feasibility
of the proposedmethodfor more than just adding detail to actual
elevationdatabases.A fast,smooth,interpolatorysubdivision method
was used,along with random displacementsproducedso that the
terrainis fully deterministic(thesamefrustumwill producethesame
view regardlessof thenavigationhistory).Thisscreenshot(actualsize
739x541pixels) was taken on a Linux PC with a 2.53GHzPentium
4 with RDRAM 1066memoryandan Nvidia GF4 Ti4600 graphics
card. This view displays1.56 million trianglesat 25.6 framesper
second,totaling40million trianglespersecondrenderingrate.This is
slightly underthemaximumpossibleratefor thisparticularhardware,
view frustum, screensizeand collection of textured triangles.This
reductionis dueto useof small256-trianglepatchesto achieve higher
adaptivity.

Fig. 19. Proceduraldetail is addedhereto a Mars polar region to
aid in the visualizationof this datasetby addingvisual cuesto what
would otherwisebe an unrealisticallysmoothsurfacethat would be
hardto discern.Theelevationsin this casearehighly exaggeratedas
requestedby the planetarygeologistsexamining this data.

X. RESULTS

Our performanceresultsweremeasuredusinga 3Ghz
Xeon processorwith 1GB of RAM and a GeForce FX
5900 Ultra. We ran the testsat a resolutionof 640 �
480 utilizing the Nvidia vertex arrayrangespeci�cation
combinedwith chunked triangle patchesto exploit the
graphics-cardcapabilities.Theseresultsare basedon a
�ight paththroughthe10-meterdataof Washingtonstate
[26] with around1.4 billion elevationandtexel valuesat
the �nest resolution.Thesourceelevationdatatotals2.7
gigabyteson disk before preprocessing.Textures were
procedurally generatedand colored from the original
geometryandstoredin RGB-565format.

The out-of-corepreprocessingstepfor this particular
data set took approximately53 minutes including the
calculationof theshadedtexturemapfrom thegeometry.
Without the shading step, preprocessingtexture and
geometrydatainto tiles took 33 minutes.

In the renderingapplication,approximately53% of
the time for a given frameis spentpreparingthe vertex
array data. During this time, vertex pointers are set
up and triangle patchesthat needto be updatedeither
due to geometryupdatesor texture coordinateupdates
are transferredto AGP memory to be pulled by the
GPU.Around45%is spentmanagingvertex andtexture
coordinatecacheallocationandtraversingthe hierarchy
to evaluatewhen triangle patchesor texture coordinate
updatesarenecessary. The time takenby thesplit/merge
optimization loops is a user de�ned parameter, but in
this test less than two percenttime was spenton this.
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Lessthanonepercenteachwasspenton fetchinggeom-
etry and texture from disk, priority updates,coordinate
mappingcalculations,triangle patch building, frustrum
culling, and new texture loading.Our resultsshow that
the main bottleneck lies in the graphics-cardupload
bandwidth and the loop for determining appropriate
trianglepatchupdatesto geometryand texture.

Performancestatistics for our implementation are
shown in Figure 20, taken during a �yo ver of Mount
Rainier (shown in the accompanying video). In the
lower-right graph, the renderingpreparationline refers
to the updating of AGP memory and set up of ver-
tex pointers.Traversal and allocation involves walking
through the diamond hierarchy and managingsystem
memory. The geometryoptimizationline representsthe
split/mergetime takenperframe.Theremainingcalcula-
tions,generallytakinglessthantwo percentof theframe
time, arelabeled“other”. Snapshotsfrom the �yo ver are
highlightedin Figure21.

XI . CONCLUSION

The paperhasstudiedthe useof a new diamonddata
structureto representview-dependentadaptationsof 4-8
meshes.Tiles are usedper diamondfor both geometry
and texture, and show very high quality antialiasing
through preciselow-pass�ltering, given that diamond
hierarchieshave twice as gradual stepping to lower-
frequency representationsas conventionalquadtree-like
schemes.Sierpinskiout-of-coreindexing is introduced,
and was shown to facilitate massive-datapreprocessing
as well as runtime pagingduring frame-to-frameview-
dependentoptimization.A generalframework for batch
preprocessingof raster hierarchieswas presentedthat
utilizescoarse-to-�ne,same-level, and�ne-to-coarsetile
gather operations.Preprocessingwas shown to be fast
on massive datasetsusing only a small, �x ed memory
footprint. A simple but visually pleasing procedural
terrain generationmethodwas described,and shown to
be very fast to computeduring a real-time�y-though.

Future work based on this terrain system can be
expandedto include dual queuesat all levels of cache,
for both geometryand texture. This would replacethe
reactive, least-recently-usedstrategy with a systemthat
supportsprefetchingand optimized priority modeling.
Anisotropic �ltering could help with highly warped
terrain data, such as near cliffs, and with the horizon
aliasingfor near-planarregions.Furtherexperimentation
with different types of texture maps, such as normal
mapsfor lighting calculations,may enhancethe visual
quality of a scene and allow dynamic lighting. As
memory bandwidth increases,it may also be possible
to play animatedtextures of certain areasin a scene

to demonstratetime-varying propertieslike plant life
or erosion.The developmentof realtime, high quality
proceduraldetail is also of interest,beyond the simple
randomdisplacementschemeusedhere.
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Fig. 20. Performancegraphsmeasuredfor a test �ight path over the 10-meterWA statedata: (top left) near-constanttriangle counts
matchingthe trianglebudgettarget, (top right) framesper second,(bottomleft) Mtri per second,and(bottomright) % breakdown of system
task times.

Fig. 21. Screenshotsof our test �ight showing the overall Washingtonstatedataset, the SanJuanislands,a view facing Victoria, and
Mount Rainierwith Mount Adamsbehind.


